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The study of the vibrations of thin rhells acted on by broadband random 
loads presented considerable problema. In using the etandard device of ex- 
~andim the shell defleatlon In a series ln the mode8 of the free vlbretlcmrr 
111, 1; la necessary to take Into eaeount a large number of vlbratlon6lnmxles. 
But with this approach such lmporturt quantities a6 the bending moment and 
deflection are represented a8 bums of large number of terme, aiia general 
conclurrlons renardina the effeots of various Droblem Darameter8 08x1 only be 
obtained by te&ous ~alculatlons. gome thoughts about the approxiamte ion- 
utetlon of the deflnlng auw for characterlstlc parameter8 are conk-d In 

P 2 to 43. Bolotln C21. for ewle. rucaeeded In obt8Inlna relatively elm- 
ple expreeslons for the spectraideiMty of stresses In a plate for the aare 
where the load Is a three-dlmenalonal whzlte noise which Is a stetlonary ran- 
dom function of time with arblrtary speotral density. An approxlm8te eelou- 
letlon of a series for the aaae of a ayllndrlcal shell Is given ln 141. 

What follows la the .solutioa of the problem of a no-1 load In the form 
of e spatial-temporal homogeneous random field. We limit our dlsaurrlon to 
vibration of shells of rufflolent extent with dampUg ao that the dlsturb- 
anoem introduced by the boundary oondltlons are signifloant at the edge8 of 
the shell only. This allow6 un to Gnore boundarv condltlons ionmlctels ln 
computing the-probablllstlc charaate~lstlcs of dekeotlon and aoceler&ion 
at the polnts far removed from the edge. In determInIng the probablllstlc 
charaaterlstlos near a partlaular sheil edge, we take l&o aC&mt only the 
boundary aondltions at the edge. Suuh a llmltatlon simpllfles subrtantlally 
the computation of rhell.vlbretlons. These computations yield a number of 
new formulaa, along with ~oiee known previously a8 special oases. Exparulon 
of the shell deflectlonln a series In the vabratlonal modes Is thereby clr- 
cumvented . 

1. w hypothesis, a large number of vibrational modes are excited ln the 
shell, so that the streee condition in the latter haa a large varlablllt 
index. 
and 63, 

Let ue. make use of the appropriate equations of shell vibration i! 5 

I- f d \-I I aza aw asw 
q*fRwJ AAw-~~za,z+~l~~)+p~=~(t,~,y) 

Eh [I $- R ($1 (ks g2 + /cl zz) + AAcp = 0 (I.11 

where w Is the normal shell deflection, p la the normal load, m la the 
street3 function for tangential foroea, 
turea of the shell, 

k and k are the prlnclpal curva- 
p IS ita &indrlC~ rlgldley, h 18 the thickness 

g Is YouDg’s modulus, and p la the linear mase of the shell. The resl& 
anoe le assrnaed to be linear. 
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Equations (1.1) dlffer from the equations given in 161 in that the second 
tern in the first and second equations allow% for energy dissipation during 
vibration. 

For simplicity, it Is assumed in Equation% (1.1) that R(d/dt) is a poly- 
nomial JWataining only odd pqu%re of t;sic opiarator cif~d$f’fe%i%ntsi*tSo# with 
respect to time. It is a%%Wd that energO diseipatien Is @er&ily eapoll, 
80 th@t t&! lDolriprpD W&e OP the Stb?q& fern 18 ~OrurirfsrablY larger than the 
maxUmM value of the first, for my’tif;lon% of the ahell. 

Let us suppose that the normal load on the shell form% a homogeneous ran- 
dom field of zero mathematioal expectation. 
Its spectral representation, 

be specify the load zln terms of 

(0, h, p) dodhdp (1.2) 

where Y is a random funzon of the three-dimensional white noise type of 
intensity S (~5, X, v). 
density of the load. 

The nonrandom function SP is called the spectral 

Dk = D (I+ ill), $ (0) = - iR (io) (1.5) 
In accordan+?e with the above the values of the function 

be real and substantially less than unity. 
turn out to 

“?5! 
Wpre8sXon t 1.3) it is 

easy to fi* the correlation function of the de caMon, 

--00 

Formula (1.6) 1% too coslglex to be used for dire& aomputat$.on%. It does, 
however, easily tield %&ore co%@+& probabilietlc ~a~~~%t~~% of deflec- 
tion. Let u% limit our%elve%, for example, to corsrpatS@~ tt;ha c&r&a&&on 
fuction for f I n I 0 , 

K,(z) = K, {Z, 0, 0) ft.71 

K (7) 18 the deflection correlation function 
Bu the nature Of the casehombb (1.6) C+ZXI (I..?), we easily find an at one pout of the shell. 

expresshi for the egectral denSty of this dlsplaoeemrent, 

PP s_ (CO. h. %1 dhdu 
(1.Q 

In some cases one must know the acceleration W” of poine% on the shell. 
It% epectral density Is obtained by multiplying (1.8) by UP . 

?ii dS_ lo, h, w) dlda 

’ (1-Q) 

p. I& us compute the spectrzdensity of the aooeleration at one petit 
of the ahell for Variow t@s of load%. A load oi the a lrylire kens a cor- 
relation function of the form (2.2) 

-where 0 is the velocity of propa@ion of the preaaure wave% and Y 1% 
the wle between the wave vector W&d the r-axis. The spectral deneity of 
the load ,!i, defined by Formula 
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Is of the form 

907 

(2.3) 

for the load (2.1). 

Here U+(w) 1s the spectral denslt 
point of the shell. Introdlclng (2.3 7 

of the pressure considered at one 
Into (1.9) and computing the Integral, 

we obtain the following relationship between the spectral densities of the 
acceleration and pressure at one point of the shell: 

(2.4) 

Next let us suppose that the load Is a three-dlmenslonal white noise.. In 
this case Its correlation function and spectral density are 

(2.5) 

We Introduce S, as given by Formula (2.5) Into (I.8), 

The integral In 
convert to the new 
by Expressions 

We now have 

(2.6) 
-co 

this expression can be computed. The first step 1s to 
Integration variables s and 0 related to the old ones 

h= Jf/zcose, p = JGsin0 (2.7) 

2x 03 
dz 

) D,c 1.9 + (Eh / D) (k2 co.+ 8 +kl sins C)s] - pas /a (2'8) 
0 0 

To compute the Integral over c In (2.8) we apply yormuIa.C81 
co 

s dz Jf co8 112 a 
c+ bza+ czBz 2eqssina 9 

0 

. q =(a/cf'$ cosa= -b/(2f/ac) tOdad 

(2.9) 

(2.10) 

Comblmlng (2.9) and the Integral over z In (2.8), we find that the con- 
stants a, b and c are as follows: 

c=(i+qz)Da, b = [2(ds-iY)+ 2d2q9] D, a = (da - 6s)z + d”lla (2.11) 

62 = pm*, da = d2 (e) = Eh ( kz co9 8 + kl sins ep (2.12) 

Computation of the first fraction in the right-hand side- of Formula (2.9) 
yields Jl Tc 

2cqssina = 21$lp2D 
(2.13) 

The secbnd fraction yields an overly cumbersome expression, but Is bounded 
for almost all values of u) as f -+ 0 . Hence, setting t small, we find 
its asymptotic representation as JI - 0 . 
(2.11) lmply that 

In this case Formulas (2.10) and 

1 for &>d, 
cosa =sin(6-d), co+ 

{ 

v/Id'---* I 

0 car 6 <d, 
9= 

t2 i4) 
JfD * 

Substituting (2.13) and (2.14) Into (2.9), we obtain an approximate value 
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Ji of the Integral over z In Formula (2.8). 

JI = II [2 191 p 1/i&& 1/W'-p-W(t))J-l for cd'> P-'da(e) 
(2.15) 

J1 = 0 for d<p-W(8) 

Introducing this expression Into Formula (2.8), we finally find that 

where 

(2.17) 

Integration ln this case extends over that interval of values of e where 
the lntegrand Is real. The function H&,x) was Introduced In 12) and has 
a clear meohanical meaning. It Is equal to the rat10 of the natural frequen- 
ciea of the shell for a given w to its value as w 4 w By a standard 
device one can express H in terms of elliptic lntegrals’ln normal form. 
For X-Z 1 the result of this operation Is as follows: (Z.18) 

(3-l < %) 

-x)-‘(1 +a)(1 -En)) (X<r-‘<1) 

12nv1 I(1 + a) (1 - ax)]-‘~~K(2u (1 + a)-1 (1 - UX)-1 (1 - xl) 
tu-l 2 I) 

where X( ) Is 
A - 1 ; for a 

a complete elliptic integral of the first kind. For a plate, 
spherical shell 

The results 
shown ln Flg.1. 

Ii (a, 1) = 
-t 

0 (a-‘< 1) 
(1 - q-‘!z (a--’ > 1) 

of COmpUting H(a,X) for various values of a and x are 

3. Computations similar to the above allow one to obtain the spectral 
densities of stresses In the shell. 

2 As shown In [53, stresses associated 
with flex’ure of the shell are given 
by Formulas 

6D SW ab 
c,-==- h2 ( @fV@ J 

6D aat0 
i 

azw 
j 

(3.1) 
o*= --m &+~a 

We llmlt ourselves here to the 
consideration of the s%ngle stress u, . 
Introducing into (3.1) the specrtral 

2 
representation of the deflection as 

f given by Formulas (1.3) and 11.4), we 

Fig. 1 
find the spectral representation of 
the stress, 

(3.2) 

Let us confine ourselves to examining the stress at a single point of the 
shell. As above, we find the spectral density of this stress, 



With a load of the wave type, the quantity S Is of 
computation of the integral In Formula (3.3) yields the 

the POX-III (2.3) and 
following result: 

Drnx (0) = ( 6$)2 (C)” 
(co9 r + Y sin2 r)2 Or (0) 

ID, [(o/c)* = (Eh/D)(k~cos~y + kl sinar)a] -pcPJ* (3.4) 

where Cp (UI) Is the spectral density of the pressure at a single point on 
the shell surface. 
the stress 

A slmllar computation gives us the spectral density of 
o, and the correlative spectral density of o, and o, 

y/ (0) = ( sin2 r + Y c,os2 r 2 
co9 y + v sin’ r i 

0 %’ 
a a_& (0) = 

sin* 7 + v cosa y 
cos* r + Y sina r 

@ 
% (3.5) 

Wow let us find the spectral densities of the stresses for the case where 
the load Is a three-dimensional white noise. We IntrCdUCe S, from Formula 
(2.5) Into (3.3) and convert. to the lnterogatlon variables (2.7), 

where d”(0) Is as In (2.12). 
may be computed. 

The Integral over x in the above expression 

With little friction, i.e. with small v , its expression is 

TC [oa - (Eh / p) (ka cosa 8 + kl sins 6)‘]‘/x 

2DV-~I’#]~Q 
(3.7) 

If the radical becomes meaningless, 
ducing (3.7) into (3.6)., we obtain 

the Integral Is equal to zero. Intro- 

92-6 JfB Y (0) 
@ox (a) = ,g$ p I?@, -+fl (vt a* xl 

Ml (Y, a, x) = G 

=/rn 

s 
(~0~3 e + Y sin2 e)a V/1 - ac (cosa 8 + x sina e)l de 

0 

The values of c and x are given by Formulas (2.19). Integration In 
Formula (3.9) Is over that Interval of values of 8 where the IntegMd has 
meaning. In exactly the same way we obtain the spectral density of the 
stress o, and the correlative spectral density of ox ,and c, , 

@)du = @,,/a I MI, @ 
?G y = U?,/% I Ml (3.10) 

where 
l/:X 

M=16 a SC s 
(sin2 e + v co9 ey VI - aa (cos2 6 + x sin* 6)s de 

0 

%x 

(3.11) 

16 
AIfs= 7 

s 
(~09 8 + v sin2 6) (sine 8 + v cosa e) Vi - a* (co9 0 + x sina 8)’ de 

0 
As before, Integration Is carried out cnly over that interval of values 

of 6 where the lntegrand Is real. 

The results of the computations are as follows: 

for a plate (a - 0), 

Ml = M, = 3 + 2v + 3va , M, = I+ 6v + va 

for a spherical shell, 

M=Ms = (3 + 2v + 3~2) v/i-_ Ma = (I+ 6v + v’) v/1 

(3.12) 

(3.13) 
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For 0 >l the values of u 6re equal to zero. 

In general, 
of all the w 

for l/a < x the values 

are equal to zero, sirme 
ln thle ease the radical ln (3.9),(3.U) 
become6 me 
Integrals (3.9 an7 

e66, For l/o > x 
and (3.11) oan be ex- 

pressed in term6 of complete elliptic' 
integr8Xe innorlWl form. !Ele6e txprea- 
sfon6 are cumbersame and difficult to 
compute, however, It is a%mpler to 
Integrate numerloally. The results of 
computing KS ~ZH given In Fig. 2. The 
values of M, and Ma for x < 1 turn 

$f(3 + 2Y + 3$) &g (1 - $g (3.11) 

With a negative radlcand in (3.14) @ = 0 . 

The correspondlrq formula for a plate IS obtained from (3.14) for k - 0. 
In this case it colncldas to aU Intents and perpoacs with the rerult which 
Bolotln [2] obtained by means of the a6ymptOtlc m&hod. 

4. Let UB find the spectral denalty of stresses near the fired edge of 
a shell; To slmpllfy matters, let u6 llmlt our di6ausslon to the caw of a 
spherical shell y > 0 . The vibration6 of the rhell are deaorfbed by Equa- 
tio?W (1.1) for k,= ko- k , 

Let us amume that the fixed edge Is I/ - 0 , where 

U=v=w=awJay 
muet be fulfilled. 

the condition6 

(4.2) 

Ae. stated in the Introduction, dlaturbaWa8 in the rkr @ ooactltfon ot‘ 
the shellatstdeer~6ewftnbia~ tryQleW% slrrll e 

I, 
-*).ZklSWS 

out?6elve6 to ilnding the bsdbg Ok'666 %3l tb!? fuad crd$s 0 tha 6bl1, aOh 
may be wHttm a8 

a11 = - GDh-=Aw (4.3) 

The eauatlon for determining w la obtained by ellminatine (o from 6Y6- 

(4.1) 

tern (4.11, 

D[l+Rj~t)J(Dnlli+~~~j+~~~=P(t,“,Y) (4.4) 

The ntlal dl6placemente U and v will not be determIned, 6ince 
they do maim In 
ixidepemde&zY0f I4 and v by vfrtue af (4.2) and (4.4'p. o*ak deWrmWed 

(4.3), and the normal def'lection 

We will attempt to solve (4.4) with P as defined by Formula (1.2) In the 

Le @!I f F (y)] dodhdp (4.5) 

where F(v) satisfies Equation 

(4.6) 
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Its solution, which vanishes with Increasing v , Is of the form 

where 

F (y) = A,+lY + Be-Bzv (4.7) 

‘12 
(4.8) 

In tNa expression we take that branch of the outer radical on which the 
real portion of the radical Is poaltlve. Due to energy dissipation, such 
Bl and BP always exist. 

.Sstis?action of the boundary condition8 (4.2) at the fixed edge of the 
ahell yields the following values for’ the constants A and B : 

(4.91 

Theee can be used to PM the value of the bending stress in the fixed 
edge of the shell (v - 0), 

!lhe correlation fun&Ion of the bendlxq stress dependent solely on the 
time Interval T la of the form 

(4.11) 

R (0, h, P) = I IL2 - PlP2 - il” 0% + Pz) I2 (4.12) 

The valuee of R for various relatlonehlpa between its arguments and 
parameters are a8 follows: 

1 
(A2 + wa for n<O 

R= j(h~+p~)a-m for 0<m<h4 

pea - lShk2 
1,x = ____ D (4.13) 

V/)/m-La)a(Xa+iO+ VGA) for m>h4 

In there conqnalatione we have ne lected terms of the order of magnitude 
of *. with the aid of Expression I 4.11) we flnd the speotral denelty of 
the stress in the fixed edge, 

(4.14) 

We next colapute the spectral densities of stresses In the fixed edge for 
two types of external loads. 

With an external load of the wave type the spectral densit of the load 
16 of the form (2.3) and conputatlon of the integral in (4.143 yields. 

mOT, (0) = f$j” (;-)” 
‘D, (a) G 

I D,c I(@ / 4* + Ehka / 01 - po2 la (4.15) 

where 0 Is given by 

(4.16) 

In accordance with (4.13) and (4.14), we have the following expressions 
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for G in acoordanae with the values of the frequency w : 

i 

1 for n<O 

G(n)= l-n for 0 < n < co.34 r (4.17) 

t(- sin7 $- I/ VG--- cosa 7)‘(1 + I/G) 

1 b C represents the ratio of the spectral den- 
81ty of stresses In the fixed edge of a spheri- 

3 cal shell to the -spectral density of the maxi- 

pig. 3 
mum stress @a (a) In the lnterlor of the 
shell, 

0, (4 
1 f3, [(o / c)” + Ehk= / f)] - PO= 1% 

(4.18) 

Pig.3 shows the dependenoe of G” on n’h for several different values 
=-i/p% 0 n ‘Inn If the load applied to the shell Is three-dlinenslonal 

%i& noise &e ‘specki density is of the form (2 5) Substituting it Into 
(4.14) and converting to the new integration varisbiee*(2.7), we obta%n 

l/Z COS 6, l/Z sin 6) dz 
(4.19) 

The Integral over E can be computed approximately by mkd.ng use of the 
facrt that $ Is 8mall. In this ease the princsipal aontribution to the value 
of the integral is from the values of the d.nte$grand ln the region close to 
E?t ;a$esofcl~sew~ the denonidnator of the isltegrand attains a mMmum, 

. . 

z* = )l(pd - Ehk2) /D (4.20) 

Hence, in oomputlng the Integral over E In (4.20) A can be replaced by 
Its value for I I) I* . One then obtains the following expression for the 
Integral over t : 

But this Integral has already been computed (see (2.17)). We also note 
that under dondltions (2.7), (4.20) and for d>EhkZ/ p we have 

(Paa - Exam jo>?? (4.22) 

Hence, In (4.21) we must take the bottom eJLPPesslon for R in Formula 
(4.13) l 

Introducing I and u from Pomnulas (2.7) and f1).20), we obtain 

Substituting (4.23) and (2.17) Into (4.21) snd then l.ntroduHmz the emres- 
si&n for the integral over I Into (4.19)) we arrive at the foIlaw5ng final 
rormula : 

(4.24) 
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With a negative radlcand in (4.24) @ Is equal to zero. 

Comparing (4.24) with (3. 4), we find that the ratio of the spectral den- 
sity of stresses In the fixed edge of the shell to Its value far away from 
the edge Is equal to 

16 / (3 + 2v + 3v2) z 4.14 for v=o.3 

A similar result for the dispersion of stresses In a plate was previously 
obtained by Bolotln [ 23. 
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