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The study of the vibrations of thin shells acted on by broadband random
loads presented considerable problems. In using the standard device of ex-
anding the shell deflection in a serles in the modes of the free vibratims
Fl], it is necessary to take into account a large number of vibrational modes.
But with this approach such important quantities as the bending moment and
deflection are represented as sums of large number of terms, and general
conclusions regarding the effects of various problem parameters can only be
obtained by tedious calculations. Some thoughts about the approximate com-
utation of the defining sume for characteristic parameters are contained in
2 to 4]. Bolotin [2], for example, succeeded in obtaining relatively eim-
ple expressions for the spectral density of stresses in a plate for the case
where the load is a three-dimensional white noise which is a stationary ran-
dom function of time with arbirtary spectral density. An approximate calcu-
lation of a series for the case of a cylindrical shell is given in [4],

What follows is the solution of the problem of a normal load in the form
of a spatial-temporal homogeneous random field. We limit our discussion to
vibration of shells of sufficient extent with damping so that the disturbd-
ances introduced by the boundary conditions are significant at the edges of
the shell only. This allows us to ignore boundary conditions completely in
computing the probabillistic characteristics of deflection and acceleration
at the points far removed from the edge. In determining the probabilistic
characteristics near a particular shell edge, we take into account only the
boundary conditions at the edge. Such a limitation simplifies substantially
the computation of shell vibrations. These computations yield a number of
new formulas, along with some known previously as special cases. Expansion
of thetahell deflection in a series in the vabrational modes is thereby cir-
cumvented.

1. By hypothesis, a large number of vibrational modes are excited in the
shell, so that the stress condition in the latter has a large variabilitf
index. Let us make use of the appropriate equations of shell vibration [5

and 61, - dy o2 g\ o
D[i +R (TE)J AAw — (/Cz B2t + Kk 5~y—2> +egm =pl(t, , y)
d o &
Ehlh +n(jﬂ)] (kaggir ky 55;)-1—AA¢=0 (1.1)

where p 18 the normal shell deflection, p 18 the normal load, » 18 the
stress function for tangential forces, % and x; are the principal curva-
tures of the shell, p 1is its cylindricai rigidi%y, h 1s the thickness,
I is Young's modulus, and p is the linear mass of the shell, The resist-
ance 1s assumed to be linear.
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Equations {1.1) differ from the equations given in [6] in that the second

term in the first and second equations allows for energy dissipation during
vibration.

For simplicity, 1t is assumed in Equations (1.1) that R(q/dt) is a poly-
nomial containing anly odd powers of the operator of differentiation with
resgg::. :;;e time. It :ls asalém:ge that enezgy disaipatign 1s generally small,
80 3t the maximym value o second term 18 conaideradly larger than the
maximum value of the first, for any motions of the shell,

Let us suppose that the normal load on the shell forms a homogeneous ran-
dom fileld of zero mathematical expectation. We specify the load in terms of
its spectral representation,

oG

p= \\\ Uty (o 3 w) dodhdp (1.2)
where V¥ 1is a random function of the three-dimensional white noise type of

intensity & {w, 1, u). The nonrandom function S, is called the spettral
density of the load.

By virtue of the roregqin% all boundary conditions may be ignored in
considering the behsvior of he shell at points far removed from its edges.
Then, introducing (1.2) into Eguations (1.1), we find the spectral represen-
tation of the deflection at points sufficiently far from the edges,

oo

‘ V (0, M, p) dod)d
w= N giothainy) (“‘Q (@f‘)k, 3 £ (1.3)

Here pl
Eh (ksd? -+ k)2
Lo, dop) =Dy [(“ FRE 3‘(—(';:‘5'1"(::;7)_} — po?

De=DU+ip),  Y(o)=—iR(io) (1.5)
In accordance with the above, the values of the function z turn out to
be real and substantially less \{.han unity. Us Expression (1.3} it is
easy to find the correlation function of the deflection,
o2
S, {w, A, u)dodidp
. p + 1
Ky (v & )= gg% ) — S o M BT (1.6)
—00

Formula {1.6) 1s too complex to be used for direct computations. It does,
however, easily yield more compact probabilistic characteristice of deflec-
tion. Let us limit ourselves, for example, to compuling the correlation

fuction for £ mn = 0,
Kw(x‘) = K {7, 0, 0) {1.7)
By the nature of the case, X, (r) i1s the deflection correlation function

at one point of the shell. Combining (1.6) and (1.7), we easily find an
expression for the spectral density of this displacement,

£ S, (0, A, p) drd]
@, (0= e (1.8)

{1.4)

2 (@, A, 1)

In some cases one must kmow the acceleration uw” of points on the shell.
Its spectral density 1s obtained by multiplying (1.8) by ot .

fov]

W4S, (o, A, p) dAdp
Dy (@) = SS Ta{a; WP

11

t us compute the spectral density of the acceleration at one poin -

of gﬁe iﬁell for various tyggs of loads. A load of the wave type has & cor
relation function of the form cos Y sin v ‘

Ky(r, &, m=K, (1_5_0__,‘1,.«0__) 1(2.1)
’ the veloecity of propagstlon of the preasure waves and vy s
:ggrgnsge gtween the wave vectorasam the y-axis, The spectral density of

the load S, defined by Formula

(1.9)
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K, (1, & n)= S \e““”'r’i* WIS (o, X, 1) dodhdy

—Co

—
1<
(84

—

(.,n_/‘~8

is of the form
/ | (l) __! (IJ . 5 ¥
Sy (@, Ay p) =, (0) 8 Kh +— cos 'r) 8 (p - — sin T) (2-3)

for the load (2.1).

Here @& (w) 1s the spectral density of the pressure considered at one
point of the shell. Introdicing (2.3§ into (1.9) and computing the integral,
we obtain the following relationship between the spectral densitles of the
acceleration and pressure at one point of the shell:

'@, (o)

Dy (@)= 7D (@7 eF 3~ (Eh/ D) (ks costy + F1sin® Y] — paw? |2

(2.4)

Next let us suppose that the load 18 a three-dimensional white noilse. In
this case its correlation function and spectral density are

K, (v, & ) =K, (1)} 8(£)d(n), Splo, A, p) =¥ (0) (2.5)
We introduce S, as given by Formula (2.5) into (1.8),

(s}
‘ didp
— g° 4 RS I —
®w"(m)_-?(m)m &Slg(wylvuﬂz (2.6)
—0
The integral in this expression can be computed. The first step is to
convert to the new integration variables > and ¢ related to the old ones

by Expressions _ _
A= Vzcos®, p= Vzsin0 (2.7
We now have
[s ¢}

2n
¥ {0) ot : dz
Dy (@) =—3 — S de& (D, 25 T (ER] D) (ks cost 0 FFr sim2 0] —pat f (28
0

To compute the integral over 2z in (2.8) we apply Formula [8]

[e o]
dz ) coslaa
g a_—}- bz? -+ czt = chﬂ sin o q (2.9)
0
. g=(a/c)y  cosa=—b/(2V ac) 0<a <) (2.10)

Combiming (2.9) and the integral over g in (2.8), we find that the con-
stants ¢, » and , are as follows:

e=(1+y)D,  b=[2(@—8) 22D,  a=(@—8P+dr  (211)
62 = pow?, d? = d?(0) = Eh (k3 cos? 0 + Kk sin? 0)2 (2.12)

Computation of the first fraction in the right-hand side- of Formula (2.9)
yields

n__ T (2.13)

2cq?sina 2|y |pw2D

The secbond fraction yiélds an overly cumbersome expression, but is bounded

for almost all values of w as ¢ -~ O . Hence, setting ¢ small, we find
its asymptotic representation as ¢ - O . In this case Formulas (2.10) and

(2.11) imply that
o {1 tor §>>d, _ViE—&]

cosa == sin (§ — d), cos — = — 244
2 o tor 8<d, ? VD (244)

Substituting (2.13) and (2.14) into (2.9), we obtain an approximate value
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Jy of the integral over 2z in Formula (2.8),
Ji=n(2|%lp VDpw* VP —p d#(0)] " ror ?>>pla?(0)

(2.15)
Ji=0 tor 0% < p~1d? ()
Introducing this expression into Pormula (2.8), we finally find that
¥ (0) | ] 9
O, .. (0) = ——"—"=1I(a, ¥) (2.16)
w O =16 Ve
where

o AT o Ehka? \ Y k

2 2 1
q€(, X)="—4 V1—a?(cos?0 L y sin?0p a= ( pw? ) v XFT (2.47)

0
Integration 1n this case extends over that interval of values of § where

the integrand is real. The function #(a,y) was introduced in [2) and has

a clear mechanical meaning. It is equal to the ratio of the natural fregquen-

cles of the shell for a given w to its value a8 @ - » , By a standard

device one can express F in terms of elliptic integrals in normal form.

For y<1 the result of this operation i1s as follows: (2.18)

0 (@1 <y)
H(x, x)= { Veatfa(d — 0l K (Vin T (=070t —ag) (<3 <H)

2r-1{(1 4+ a) (1 —ay)) K Ra(d +ay 1 (1 —ax) (1 —yx) (a3 >1)

where k( ) is a complete elliptic integral of the first kind. For a plate,
K =1 ; for a spherical shell

_{ v (a7t <) 51
H(a, 1)= { A —aty (a1 >1) (2.19)

The results of computing #(a,x) for varilous values of g and y are
shown in PFig.l.

3. Computations similar to the above allow one to obtain the spectral
densitles of stresses in the shell.
2 /\\ —T As shown in [5], stresses assoclated
X=/

H with flexure of the shell are given
by Formulas

6D (9% 9w
== 7 [+ a9

7 iy by ey G
~{xear W= T

We limlt ourselves here to the
1%=07 s consideration of the single stress o, .
| E‘;_l Introducing into {3.1) the spectral
representation of the deflection as
q 7 2 given by Formulas {1.3) and {1.%), we
4 find the spectral representation of
Fig. 1 the stress,

o0 N

_ §2~ ¢ (A2 vp?) e;(mt+)\x+pu)v (@, A, 1) dod\dp 3.2)
Ox = "p3 Q(w, A B)
00
Let us confine ourselves to examining the stress at a single point of the
gshell, As above, we find the spectral density of this stress,
6D\2 (¢ (A2 vp2R S, (0, A, ) dhdp
@, @ =) \S 2 (@, &, PP

(3.3)

—0C
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With a load of the wave type, the quantity S. 1s of the form (2.3) and
computation of the integral in Formula (3.3) yields the following result:
6D\2/ w\4 (cos?y 4 vsin? )2 D, (@)

Do, (@) = (71?) (T) | D, (0] c)* = (Eh [ D) (kg cos? ¥ + ki sin? 1)?] — pw?}?
vwhere &_(w) is the spectral density of the pressure at a single point on

the shell surface. A similar computation gives us the spectral density of
the stress o, and the correlative spectral density of o, and o,

(3.4)

sin?y + v cos? 1\2 B sin?y -} vcos?y
Do, (0= (m) Py oo, (O = oy vsimty Py 3

Now let us find the spectral densities of the stresses for the case where
the load is a three-dimensional white noise. We introduce S, from Formula
(2.5) into (3.3) and convert to the interogation variables (2.7),

2n o]

6D \2 ¥ 3
max ((0) = <"i{2—) 'é—(o) g (COS2 0 + h% Sin2 6)2 de g I Dk [zz + D—zldgz(e)] _Pm21 (3‘6)
0 0

where g2(g) 1s as in (2.12). The integral over x 1n the above expression
may be computed. ’

With 1ittle friction, 1.e. with small y , its expression is
7t [0% — (ER / p) (ka cos? 8 + ki sin2 0)')"/:

2DV Dp|b|e?
If the radical becomes meaningless, the integral is equal to zero. Intro-
ducing (3.7) into (3.6), we obtain

I yDVv
D, (0)= 4—;:; VT ITE:)D% Mi(v, a, %) (3.8)

(3.7)

1gre
My(v,a, §) = 1—:? S (c0s20 -+ v sin? 8)2 Y1 — a2 (cos? 0 |-  sin% 6)2 4 (3.9)
0

The values of g and y are given by Formulas (2.19). Integration in
Pormula (3.9) 1s over that interval of values of ® where the integrand has
meaning. In exactly the same way we obtain the spectral density of the
stress ¢, and the correlative spectral density of e, and g, ,

®, =D, Ma/ My, O, 0, = Do M/ M1 (3.10)

where
Yam

16 .
My=— S (sin?® + v cos? 8)2 V' 1 — a2 (cos? O + y sin? 0)2do
0 (3.11)

o
16
My= —~ S (cos? 8 -+ v sin? 0) (sin? 0 + v cos20) V1 —a?(cos? 8 + % sin3 )2 d0
o

As before, integration is carried out cnly over that interval of values
of @ where the integrand is real.

The results of the computations are as follows:
for a plate (g -~ 0),
My=M,=3~+2v+ 3 My=1-+6v+ +3 (3.12)
for a spherical shell,
M=M;=(342v}3v) YT _ Ms=(1+6v4+v) YT —ar (3.13)
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For a >1 the values of y are equal to zero.

U — . Iixlgzﬁeral, for 1/a < x the values
2 of a e ¥ are equal to zero, since
/7;§/ in this case the radical in (3.9, (3.11)
. 4 - becomes me ess, For 1/¢a> y
4 integrals (3.9) and (3.11) can be ex-

/// pressed in terms of complete elliptic

// integrals in normal form. These expres-
sl

[\

sions are cumbersome and difficult to
compute, however. It is simpler to

1nteg:€:;§ mmericaliy. ﬁe "r;sults of
B 7 compu ¥, are given « 2. The
x=0 1”7”7 l’ x values of uf amd ¥, for y <1 turn
7 7 - Fe out to be less then y, for each .
For a spheriocsl shell Formulas (3.%),
Fig. 2 (3.10)and (3.13) yleld
92 VD ¥ (o) Ehk2 \': o
D, () = D, @) = g = (8 + 203 T e R

With a negative radicand in (3.14) ¢ =0 .

The corresponding formula for a plate is obtained from (3.14) for % = 0.
In this case it coincides to all intents and perposes with the result which
Bolotin [2] obtained by means of the asymptotic method.

4, Let us find the spectral density of stresses near the fixed edge of
a shell. To simplify matters, let us limit our discussion to the case of a
spherical shell y > O . The vibrations of the shell a&re described by Equa-
tions (1.1) for = k= % ,

d 0w
p[1+ (5 )| sow—kaetp g5 =r(t 2 )

. (4.1)
‘ d
Eh[i +R (-J;)] kAW 4 AAG =0
Let us assume that the fixed edge 18 y = O , where the conditions
u=v=w=0w/dy (4.2)

must be fulfilled.

Az stated in the introduction, disturbances in the stress condition of
the shell must decresse with distance from the shell edge ¥ - «) , We 1imit
ourselves to finding the bending stress in the fixed edge of the shell, which
may be wriltten as 5, = — 6Dh %AW (4.3)

'I'!(w e;;uation for determining w 1s obtained by eliminating o from sys-
tem (4.1

’ d ] Ehk o

D[1+R(—d;>j<AAw+TIU)—}-p&?:P(L z, ) (4-4)

The entlal displacements u and v wlll not be determined, since
they do sppear in (#.3), and the normal deflection p can be determined
independently of u and v by virtue of (4¥.2) and (#.&?.

We will attempt to solve (4.4) with P as defined by Formula (1.2) in the
form ot (el +2x)
. et “((1),7\”1‘}) iny ’ e
o=\ 5 T i D e T @) dedhdn (5
OO

where p(y) satisfies Equation

i d2 52 Ehk? 7
{Dk [(— A% 4 Vdj*) - D J — p(o~} Fy)=0 (4.6)
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Its solution, which vanishes with increasing y , is of the form

F(y) = Ae™PV 4. BeBwv (4.7)
where . Ehj
pw s Y2 VY
Bz = [kzi (D_k_ 5 ) ] (4.8)

In this expression we take that branch of the outer radical on which the
real portion of the radical is positive. Due to energy dissipation, such
6, and g, always exist.

Satisfaction of the boundary conditions (4.2) at the fixed edge of the
shell yields the following values for the constants 4 and p :
Ba - ip B1 - ip
Bi—pfa Be— (49)
These can be used to find the value of the bending stress in the fixed
edge of the shell (y = 0),

o .

6Dl 1(wl+7\x)V LA, B )

Sy =T S xg D [(pc_{_ pe)y +(;'th2/ D)] —pw? [n2 — BiBa — ip (31 - Bo)] dodhdu  (4.10)
k

A= B:

-—00
The correlation function of the bending stress dependent solely on the
time interval =t 18 of the form

o0

(6D R(o, A, 1) 7S, (@, A, 1) dodrdp.
Koy @ = () S g S | Dy, [(M + w3)®  Ehk? | D] — po? 2
R (0, &, p) =|p2— BB — it (B1 + B2) |2 (4.42)

The values of R for various relationships between its arguments and
parameters are as follows:

(A2 u?)? for n<0
pw? — Thk?
R:{(W“—!—p“)’-—m for 0<m <A (m: D—*—)
lk(p‘ sign @ -+ VVrTz— }»2)2 A2p24+ V¥V m) for m>A
In these computations we have neglected terms of the order of magnitude

of §. With the aid of Expression (4.11) we find the spectral density of
the stress in the fixed edge,

(4.11)

—00

(4.13)

oDy \°§ R (@, & 1) S, (@, b, 1) dhdp

o _ (5D 4.14
oy =78 23| Dy [(M2 + w32 + ERk*/ D] — pa? |2 o

We next compute the spectral densitles of stresses in the fixed edge for
two types of external loads.

With an external load of the wave type the spectral density of the load
1s of the form (2.3) and computation of the integral in (4.14) yields

(6D 2/ 0\4 O, ()G
s, ()= @) () | D [0/ ¢f + ERK?[ D} — po? (4-49)
where (¢ 1s given by

, c \4 ) ©

G = (T) R(m, =5 CosT, — sin T) (4.16)

In accordance with (4.13) and (4.1%), we have the following expressions
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for ¢ in accordance with the values of the frequency w :

5

6",0 Qo 1 for n<0

G(n)——*éi——n for 0<n<costy (4.47)
U(—siny +VVrf~—cos27)2(1 +Vn)

for 1 >costy

iy

--gy

0] D

y (n _ (_._c__):; pw? — Ehkﬁj

1 ¢ represents the ratio of the spectral den-
ity of stresses in the fixed edge of a spheri-
0 5 cal shell to the spectral density of the maxiw
mum stress @_(») 1in the interilor of the
Fig. 3 shell, “

6D\2 [ o \4 0, ()
Dg, (©) = @, (@) G, (D“(“’):(“h?) (?)}D,‘{(w/c)4+a‘hkz/p}—pm=gz (418)

Flg.3 shows the dependence of G on n's for several different values
of y=—Ygn, 0, n, }/yn. If the load applied to the shell 1s three-dimensional
white noise, the spectral density is of the form (2.5). Substituting it into
{4.14) and converting to the new integration variables {2.7), we obtain

° _(@_p_)zW(m)ZS"d cion(m, V20030, V7 sin 6) dz
o =\ 27 ) ®\ 1D, " ¥ B/ D) —po' B

{419)
0 )
The integral over =z can be computed approximately by making use of the
fact that + 4is small. In this case the principal contribution to the value
of the integral is from the values of the integrand in the region close to

that value of 2z where the denominator of the integrand attains a minimum,
l1.e. for » close to

2* = Y (pw? — Ehk%) /D (4.20}

Hence, in computing the integral over > in (4.20) » can be replaced by
its value for » = 2% , One then obtains the following expression for the
integral over z @

oo
— — \ dz
A= R{w, V2% cos®, ¥V 2*sinb) S (D, (:* + Erk?] D) — po? (4.21)
0
But this integral has already been computed (see (2.17)). We also note
that under condifions (2.7), (4.20) and for @® > Ehk2/p we have

(pw® — Ehk?) [ D >0 (4.22)

( Hex)xce, in (4,21) we must take the bottom expression for 2 in Formula
uols .

Introducing ) and u from Formulas {2.7) and (%.20), we obtain

C— N (8 {(po? -~ Ehk?) D™1sin?0 tor ®8in6 >0 4.93
R(w, V*coso, z"mn&):{ 0 for wsn0<0 (4.23)

Substituting (4.23) and (2.17) into (4.21) and then introducing the expres-
8idn for the integral over z into (4.19), we arrive at the following finsal

formula: o _ 36 WY (@) (Q)‘/z(1 MEhk’) h (4.24)
T Tyel \p pa?
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With a negative radicand in (4.24) ¢ 1is equal to zero.
Comparing (4.24) with (3. 4), we f£ind that the ratio of the spectral den-

8ity of stresses in the fixed c¢dge of the shell to 1ts value far away from
the edge is equal to

16/ (3+ 2v+ 3v8) =~ 414  for v = 0.3

A similar result for the dispersion of stresses in a plate was previously

obtained by Bolotin [2].

BIBLIOGRAPHY

Bolotin, V.V., Statisticheskie metody v stroitel'noi mekhanike (Statis-
tical Methods in Structural Mechanics). Gosstroiizdat, 1961,

Bolotin, V.V., Ob uprugikh kclebanilakh, vozbuzhdaemykh sluchainymi
silami s shirokim spektrom {On elastic vibrations excited by random
brgad-spectrum forces). Izv.vyssh.ucheb.Zaved., Mashinostroenie, M 4,
1963.

Bolotin, V.V., Primenenle metodov teorli verolatnosti v teorii plastin
1 obolochek (Application of the Methods of Probabllity Theory to the
Theory of Plates and Shells). Trudy IV vses.Konf.Teor.Obolochek 1
Plastin, Izd.Akad.Nauk Arm.SSR, 1964.

Dyer, 1., Response of space vehicle structures to rocket engine noise.
Random vibration (S.Crandall, ed.), Vol.2, N 7, 1963.

Gol'denveizer, A.L., Teoriia upruglkh tonkikh obolochek (Theory of Thin
Elastic Shells). Gostekhizdat, 1953.

Bolotin,,V.V., Kraevol effekt pri kolebaniiakh uprugikh obolochek (The
edge effect in the oscillations of elastic she11§§. PMm Vol. 24k, W 5,
1960.

Sveshnikov, A.A., Prikladnye metody teorlil sluchainykh funktsii (Applied
Methods of Random Function Theory). Sudpromglz, 1961.

Gradshtein, I.S. and Ryzhlk, I.M., Tablitsy integralov, summ, riadov 1
proizv;genii (Tables of Integrals, Sums, Series and Products). Fizmat-
glz, 1962.

Translated by A.Y.



